Rigs of Rods 2023.09
Soft-body Physics Simulation
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Loading...
Searching...
No Matches
SHA1.cpp
Go to the documentation of this file.
1/*
2 100% free public domain implementation of the SHA-1 algorithm
3 by Dominik Reichl <dominik.reichl@t-online.de>
4 Web: http://www.dominik-reichl.de/
5
6 This version is modified for Rigs of Rods project
7 https://sourceforge.net/projects/rigsofrods/
8
9 Version 1.6 - 2005-02-07 (thanks to Howard Kapustein for patches)
10 - You can set the endianness in your files, no need to modify the
11 header file of the CSHA1 class any more
12 - Aligned data support
13 - Made support/compilation of the utility functions (ReportHash
14 and HashFile) optional (useful, if bytes count, for example in
15 embedded environments)
16
17 Version 1.5 - 2005-01-01
18 - 64-bit compiler compatibility added
19 - Made variable wiping optional (define SHA1_WIPE_VARIABLES)
20 - Removed unnecessary variable initializations
21 - ROL32 improvement for the Microsoft compiler (using _rotl)
22
23 ======== Test Vectors (from FIPS PUB 180-1) ========
24
25 SHA1("abc") =
26 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
27
28 SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") =
29 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
30
31 SHA1(A million repetitions of "a") =
32 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
33*/
34
35#include "SHA1.h"
36
37using namespace RoR;
38
39#ifdef SHA1_UTILITY_FUNCTIONS
40#define SHA1_MAX_FILE_BUFFER 8000
41#endif
42
43// Rotate x bits to the left
44#ifndef ROL32
45#ifdef _MSC_VER
46#define ROL32(_val32, _nBits) _rotl(_val32, _nBits)
47#else
48#define ROL32(_val32, _nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
49#endif
50#endif
51
52#ifdef SHA1_LITTLE_ENDIAN
53#define SHABLK0(i) (m_block->l[i] = \
54 (ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
55#else
56#define SHABLK0(i) (m_block->l[i])
57#endif
58
59#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \
60 ^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))
61
62// SHA-1 rounds
63#define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
64#define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
65#define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); }
66#define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); }
67#define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); }
68
70{
72
73 std::memset(m_buffer, 0, sizeof(m_buffer));
74 std::memset(m_digest, 0, sizeof(m_digest));
75 std::memset(m_workspace, 0, sizeof(m_workspace));
76 std::memset(__reserved1, 0, sizeof(__reserved1));
77 std::memset(__reserved2, 0, sizeof(__reserved2));
78
79 Reset();
80}
81
83{
84 Reset();
85}
86
88{
89 // SHA1 initialization constants
90 m_state[0] = 0x67452301;
91 m_state[1] = 0xEFCDAB89;
92 m_state[2] = 0x98BADCFE;
93 m_state[3] = 0x10325476;
94 m_state[4] = 0xC3D2E1F0;
95
96 m_count[0] = 0;
97 m_count[1] = 0;
98}
99
100void CSHA1::Transform(uint32_t *state, uint8_t *buffer)
101{
102 // Copy state[] to working vars
103 uint32_t a = state[0], b = state[1], c = state[2], d = state[3], e = state[4];
104
105 memcpy(m_block, buffer, 64);
106
107 // 4 rounds of 20 operations each. Loop unrolled.
108 _R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);
109 _R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);
110 _R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);
111 _R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);
112 _R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);
113 _R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);
114 _R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);
115 _R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);
116 _R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);
117 _R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);
118 _R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);
119 _R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);
120 _R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);
121 _R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);
122 _R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);
123 _R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);
124 _R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);
125 _R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);
126 _R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);
127 _R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);
128
129 // Add the working vars back into state
130 state[0] += a;
131 state[1] += b;
132 state[2] += c;
133 state[3] += d;
134 state[4] += e;
135
136 // Wipe variables
137#ifdef SHA1_WIPE_VARIABLES
138 a = b = c = d = e = 0;
139#endif
140}
141
142// Use this function to hash in binary data and strings
143void CSHA1::UpdateHash(uint8_t *data, uint32_t len)
144{
145 uint32_t i, j;
146
147 j = (m_count[0] >> 3) & 63;
148
149 if ((m_count[0] += len << 3) < (len << 3)) m_count[1]++;
150
151 m_count[1] += (len >> 29);
152
153 if ((j + len) > 63)
154 {
155 i = 64 - j;
156 memcpy(&m_buffer[j], data, i);
158
159 for ( ; i + 63 < len; i += 64) Transform(m_state, &data[i]);
160
161 j = 0;
162 }
163 else i = 0;
164
165 memcpy(&m_buffer[j], &data[i], len - i);
166}
167
169{
170 uint32_t i;
171 uint8_t finalcount[8];
172
173 for (i = 0; i < 8; i++)
174 finalcount[i] = (uint8_t)((m_count[((i >= 4) ? 0 : 1)]
175 >> ((3 - (i & 3)) * 8) ) & 255); // Endian independent
176
177 UpdateHash((uint8_t *)"\200", 1);
178
179 while ((m_count[0] & 504) != 448)
180 UpdateHash((uint8_t *)"\0", 1);
181
182 UpdateHash(finalcount, 8); // Cause a SHA1Transform()
183
184 for (i = 0; i < 20; i++)
185 {
186 m_digest[i] = (uint8_t)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255);
187 }
188
189 // Wipe variables for security reasons
190#ifdef SHA1_WIPE_VARIABLES
191 i = 0;
192 memset(m_buffer, 0, 64);
193 memset(m_state, 0, 20);
194 memset(m_count, 0, 8);
195 memset(finalcount, 0, 8);
197#endif
198}
199
200#ifdef SHA1_UTILITY_FUNCTIONS
201// Get the final hash as a pre-formatted string
202std::string CSHA1::ReportHash()
203{
204 unsigned char i;
205 char szTemp[16] = {};
206 char szReport[41] = {}; // 40 characters of hash + terminator NULL-character
207
208 for (i = 0; i < 20; i++)
209 {
210 sprintf(szTemp, "%02X", m_digest[i]);
211 strcat(szReport, szTemp); // Beware: strcat() adds NULL-character
212 }
213
214 return szReport;
215}
216#endif
217
218// Get the raw message digest
219void CSHA1::GetHash(uint8_t *puDest)
220{
221 memcpy(puDest, m_digest, 20);
222}
#define _R4(v, w, x, y, z, i)
Definition SHA1.cpp:67
#define _R0(v, w, x, y, z, i)
Definition SHA1.cpp:63
#define _R1(v, w, x, y, z, i)
Definition SHA1.cpp:64
#define _R2(v, w, x, y, z, i)
Definition SHA1.cpp:65
#define _R3(v, w, x, y, z, i)
Definition SHA1.cpp:66
uint8_t m_buffer[64]
Definition SHA1.h:95
void Reset()
Definition SHA1.cpp:87
uint32_t __reserved2[3]
Definition SHA1.h:97
void UpdateHash(uint8_t *data, uint32_t len)
Definition SHA1.cpp:143
uint32_t m_state[5]
Definition SHA1.h:92
void Transform(uint32_t *state, uint8_t *buffer)
Definition SHA1.cpp:100
uint8_t m_digest[20]
Definition SHA1.h:96
uint32_t m_count[2]
Definition SHA1.h:93
void GetHash(uint8_t *puDest)
Definition SHA1.cpp:219
SHA1_WORKSPACE_BLOCK * m_block
Definition SHA1.h:119
uint32_t __reserved1[1]
Definition SHA1.h:94
std::string ReportHash()
Definition SHA1.cpp:202
uint8_t m_workspace[64]
Definition SHA1.h:118
void Final()
Definition SHA1.cpp:168